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INTRODUCTION 
 

In response to the high school dropout crisis, which comes with great economic and social costs, early 

warning systems (EWSs) have been developed to systematically predict and improve student outcomes. 

The CSDE created its EWS—the Early Indication Tool (EIT)—as a kindergarten through 12th grade (K-

12) system that identifies students who may need additional support to reach academic milestones and 

facilitates timelier, targeted interventions. The EIT is a critical support component in Connecticut’s 

ESSA Plan (U.S. Department of Education, 2017). Ultimately, CSDE wants more students to meet 

academic milestones and graduate from high school.  

 

For the EIT, CSDE developed a unique model for each grade from first grade through Grade 12. The 

EIT assigns each student to a targeted support level (High, Medium, or Low) based on the individual’s 

likelihood of meeting the academic milestone corresponding to her or his grade. The aim of the EIT is to 

better identify those students in need of targeted support and inform on-the-ground practitioners who 

may intervene long before students may be dropping out.  

 

Connecticut’s early grade models use factors such as attendance, assessments, disciplinary incidents, 

free-or-reduced price meal eligibility status, and student mobility to group students using modeling 

approaches including latent profile analysis (LPA)1 and random forests.2  This combination of modeling 

approaches takes advantage of sophisticated machine learning algorithms to determine which variables 

are most essential to predictions, considers how students are clustering together on these variables, and 

avoids overfitting of models.3 As students advance to middle school and high school, Connecticut’s 

predictive models incorporate course-level variables including course enrollments and course 

performance. In addition, the EIT models use English learner (EL) status and detailed special education 

data as predictors, including primary disability, hours of special education services received, and percent 

of time with non-disabled peers. Finally, school- and district-level predictors are included to capture 

factors beyond the student level. 

                                                 
1 Latent Profile Analysis or LPA is a person-centered statistical method of clustering that allows us to identify 

hidden groups of students in the data based on similar characteristics on the various observed data elements. 

2 Random Forest is a machine-learning algorithm that can be used for classification tasks. This approach creates a 

prediction model based on an ensemble of hundreds of decision trees (hence “forest”) that are uncorrelated to 

each other due to random subsetting of training records and fields (hence “random”). By using not just one but 

hundreds of decision trees, the model achieves greater accuracy and stability in classifying and predicting. 

3 Overfitting occurs when the estimated model performs well with the original data, but poorly when applied to 

other datasets. 

https://portal.ct.gov/-/media/SDE/ESSA/august_4_ct_consolidated_state_essa_plan.pdf?la=en
https://portal.ct.gov/-/media/SDE/ESSA/august_4_ct_consolidated_state_essa_plan.pdf?la=en
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RATIONALE 

Overview 

For decades, educational researchers have studied high school dropout in efforts to improve student 

outcomes, especially for students from low-income families, students of color, English learners (ELs), 

and students with disabilities (SWD) (e.g., DePaoli, Balfanz, Atwell, & Bridgeland, 2018; Ekstrom, 

Goertz, Pollack, & Rock, 1986; Rumberger, 2011). Although dropout rates have improved over that 

span, the national high school graduation rate is still below 85 percent, and researchers and 

policymakers have called the college and career readiness (CCR) of America’s high school students into 

question (DePaoli et al., 2018). While this issue has been at the center of educational research and 

reform efforts (e.g., Belfield, 2007; Belfield & Levin, 2007; Ferguson, 2007; Rebell, 2007; Rumberger, 

2011), the relative lack of public awareness of staggering dropout rates has prompted some experts to 

deem this problem a “silent epidemic” (Bridgeland, DiIulio, & Morison, 2006, p. 1). The EIT uses 

education data to systematically make predictions regarding the likelihood of students meeting academic 

milestones and seeks to help target interventions in order to increase the number of students that are 

meeting these milestones and graduating from high school college-and-career ready.  

 

High school dropout is a complex issue. Rumberger (2011) describes dropout as a process and problem 

with four dimensions: nature, consequences, causes, and solutions. With more than 7,000 American 

students dropping out of high school each day (Rumberger, 2011), the dropout crisis comes with great 

economic and social costs (Belfield & Levin, 2007). Several studies have explored predictive factors 

from elementary school through early high school to identify students who are at-risk of dropping out 

(e.g., Allensworth & Easton, 2005, 2007; DePaoli, Balfanz, & Bridgeland, 2016; Ekstrom et al., 1986). 

Researchers have found that the ABCs (i.e., attendance, behavior, and course performance/credit 

accrual) are most predictive of high school dropout (e.g., Mac Iver & Messel, 2013). However, the 

ABCs are not the sole predictors of missing academic milestones.  

 

Rumberger and his colleagues identified a host of factors that are predictive of dropout, including 

student (demographics, achievement, attitudes, behaviors); family (parental education, family 

socioeconomic status [SES], family structure, parental employment, family size, parenting practices, 

parenting expectations, sibling dropout); school (school composition, school size, resources, academic 

climate, disciplinary climate, teaching quality); and community (unemployment rates) variables (e.g., 

Rumberger, 2011; Rumberger & Larson, 1998; Rumberger & Lim, 2008; Rumberger & Palardy, 2005; 
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Rumberger & Thomas, 2000). Furthermore, researchers have cited the role that specific triggers play in 

the dropout process, including housing, money, criminal or legal issues, accidents or health problems, 

suspensions, pregnancy, and personal relationships (Dupéré et al., 2018). Armed with these findings, 

educators and policymakers have looked to target student interventions and support via EWSs. 

 

Schools and districts have implemented many interventions to raise the high school graduation rate. 

Levin and Belfield (2007) have concluded that improvements can result from fine-tuning factors from 

kindergarten through 12th grade, including academic expectations, school and class sizes, 

personalization, counseling, parental engagement, instructional time, and personnel. Additionally, 

researchers have found that there is a correlation between school climate and graduation rates (e.g., 

Boyd, 2016; Freeman et al., 2015). Navigating the vast array of intervention options is challenging, 

since a one-size-fits-all solution to the dropout problem does not exist. 

 

Predictive modeling is a core component of EWS development. Educational researchers have used 

student data to develop predictive models to identify students at risk of a host of troublesome outcomes, 

including dropping out (e.g., Allensworth, 2013). CSDE has developed models to estimate predicted 

probabilities of meeting academic milestones; the students with the lowest probabilities are deemed 

most in need of targeted support.  

Special Populations Must Be Supported 

Although some states and districts have shown incredible progress, there are still low-performing 

schools and disparities in national graduation rates for students of color (76.4% for Black students and 

79.3% for Hispanic students, compared with 88.3% for white students in 2016) and special populations, 

including students with disabilities (65.5%), students from low-income families (77.6%), and students 

with limited English proficiency (66.9%) (DePaoli et al., 2018).  

 

In Chicago, researchers examined the graduation rates for students with disabilities and English learners 

(Gwynne, Lesnick, Hart, & Allensworth, 2009; Gwynne, Pareja, Ehrlich, & Allensworth, 2012). The 

authors not only found that there was a graduation rate disparity between the major categories (i.e., 

SWD and non-SWD, ELs and non-ELs), but graduation rates also varied greatly across SWD categories. 

In fact, four-year graduation rates were below 50 percent for students two or more years below grade 

level in grade 9, students with learning disabilities, students with mild cognitive disabilities, and 

students with emotional disturbances.  
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Malin, Bragg, and Hackmann (2017) expressed concern that if graduating from high school and college 

and career readiness are “not recognized as important for all students, the nation risks perpetuating 

inequities among student groups that may have a lasting detrimental impact on society” (p. 813). 

Wilkins and Bost (2016) acknowledged that implementing early warning systems and other 

interventions has increased graduation rates of students with disabilities, but cautioned educational 

leaders to review data regularly, and revise and review school policies accordingly. Balfanz and Legters 

(2004) asserted the importance of targeting a relatively small number of failing high schools:  

 

High schools with weak promoting power are the engines driving the low national graduation 

rate for minority students…These high schools must be specifically targeted for 

reform…Transforming the nation’s dropout factories into high schools that prepare all their 

students for post-secondary schooling or training and successful adulthood should thus be an 

urgent national priority. (p. 23) 

 

The Every Student Succeeds Act (ESSA) has marshalled in a “new environment of accountability” in 

which federal funding to states requires evidence of improved outcomes for all students (Hanover 

Research, 2018, p. 6). 

Interventions and Support Must Follow Early Warning System 

Predictions 

Early warning systems employ models that depend on available data to predict everything from 

bioterrorism (e.g., Berkowitz, 2013) to landslides (e.g., Battistini et al., 2017). The key to any EWS is 

the intervention and/or support that follows the prediction. Balfanz (2009, 2011, 2014, 2016) is a leader 

in the development and dissemination of EWS research in education. He asserts, “Early warning and 

intervention systems provide the necessary means to unify, focus, and target efforts to improve 

attendance, behavior, and course performance. Their fundamental purpose is to get the right intervention 

to the right student at the right time” (Balfanz, 2009, p. 10). He and his colleagues have written 

extensively about their findings and have highlighted the importance of students being engaged and 

being at school (e.g., Balfanz & Byrnes, 2012; Balfanz, Byrnes, & Fox, 2014).  

 

While she does not dispute that interventions must be on-time and on-target, Scala (2015) cautions 

educators and policymakers against making causal claims: “Early warning indicators are used only for 
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prediction—they do not cause students to drop out. Rather, they should be treated as symptoms of the 

dropout process that is in progress” (p. 8, emphasis in original). Since these symptoms exhibit 

themselves at different times, researchers have made efforts to study indicators and outcomes from pre-

kindergarten to the end of the student life cycle.  

 

Many researchers have conducted studies using large datasets at the city and state levels to develop 

EWSs to improve student outcomes. As of 2013, more than 30 state departments of education had early 

warning systems (Data Quality Campaign, 2013). The Every Student Succeeds Act (2015) expanded 

state responsibility over schools, and this legislation is driving all states to develop EWSs and other 

accountability systems to support local education agencies (Civic Impulse, 2017).  

Connecticut’s Data and Academic Milestones 

Recent changes in graduation requirements (Connecticut General Assembly, 2017), as well as 

Connecticut’s adoption of Next Generation Science Standards (NGSS), Smarter Balanced Assessment 

Consortium (SBAC) mathematics and English language arts (ELA) assessments, and the Next 

Generation Accountability System (CSDE, 2016, 2017, 2018), have created unique opportunities to 

develop prediction models that incorporate new and relevant data. The CSDE data warehouse contains 

the requisite data to train prediction models that integrate course-, school- and district-level data and 

standardized assessments with other student-level variables to predict a host of outcomes, including 

college and career readiness (CCR). Each model includes a large pool of predictors in order to determine 

student probabilities of meeting academic milestones.  

 

Table 1 provides an overview of the academic milestones modeled by the EIT for students in different 

grades. As the table shows, there are four outcomes of interest, each covering students across a three-

grade band. For students in grades 1 to 3, the EIT is considering students’ probabilities of reaching 

reading proficiency by the end of third grade, as measured by meeting or exceeding expectations on the 

ELA SBAC assessment administered at the end of third grade. For students in grades 4 to 6, the EIT is 

considering students’ probabilities of meeting or exceeding expectations on the mathematics and ELA 

SBAC assessments administered at the end of sixth grade. For students in grades 7 to 9, the EIT is 

considering students’ probabilities of being on-track at the end of ninth grade. Finally, for students in 

grades 10 to 12, the EIT is considering students’ probabilities of being college and career ready. 
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Table 1 

Academic milestones modeled by the EIT 

Grades Academic Milestone 

1-3 Proficient in reading by the end of Third Grade 

 Meeting or exceeding expectations on the 3rd Grade ELA SBAC 

4-6 Prepared for Middle School 

 Meeting or exceeding expectations on the 6th Grade ELA and 

mathematics SBACs 

7-9 Prepared for High School 

 On-track to High School Graduation in Grade 9 

10-12 College and Career Ready 

 Meeting assessment and course-passing benchmarks 

 

The University of Chicago Consortium on School Research (CCSR) made considerable efforts to study 

the transition into high school and its relationship with high school success (e.g., Allensworth & Easton, 

2005, 2007). The CCSR concluded that a 9th grade on-track indicator combining information on credits 

and grades earned during freshman year is a stronger predictor of high school graduation than 

standardized tests. Following the CCSR’s lead, CSDE adopted the On-track in 9th grade indicator as a 

central component of Connecticut’s Next Generation Accountability System (CSDE, 2016, 2017, 2018). 

Table 2 summarizes the on-track criteria that is used for the EIT. 

 

Table 2 

Criteria for On Track to High School Graduation in Grade 9 indicator for EIT 

Number of semester F’s in core courses 

(1 semester course = 0.5 credit) 

Number of credits accumulated during Grade 9 

(1 full-year course = 1 credit) 

Less than 5.0 5.0 or more 

2 or more Off-track Off-track 

0 to 1 Off-track On-track 

Note. Students who fail one full year (i.e., two semesters) of a core course and/or earn less than five total credits 

during 9th grade are deemed off-track. English, mathematics, science, and social studies are core courses for the 

purposes of the on-track indicator. 

 

The CCR outcome for students in grades 10 to 12 includes assessment and course-passing components. 

For purposes of the EIT, College and Career Ready means a student who, by the end of high school, has: 

 

 achieved proficiency on the SAT in both Evidence-Based Reading and Writing (EBRW;  480 or 

higher) and Mathematics (530 or higher); and  

 achieved one or more of the following: 

o passed two courses combined in Advanced Placement (AP), International Baccalaureate 

(IB), or dual enrollment; or 

o passed two courses in one of 17 Career and Technical Education clusters (CTE); or  

o passed two workplace experience courses. 
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Machine Learning Helps to Understand Patterns in Data and 

Solve Problems 

Given the importance of prediction models for efforts to identify at-risk students via EWSs and inform 

practitioners who may intervene, it is necessary to understand the approaches to statistical modeling that 

undergird these models. Forecasting the academic milestones for Connecticut’s students includes the 

prediction of a binary outcome (e.g., on-track or off-track) from quantitative and categorical independent 

variables. When creating a model of this type, a logistic regression model is often used, particularly in 

the social sciences and education (Cizek & Fitzgerald, 1999). Fortunately, new modeling approaches are 

available that improve on the predictive accuracy of logistic regression models.  

 

Machine Learning. Machine learning involves the use of data mining techniques and computer 

algorithms to understand patterns in data to solve problems. Conway and White (2012) place machine 

learning “at the intersection of traditional mathematics and statistics with software engineering and 

computer science” (p. 1), and Ng describes it as “the science of getting computers to act without being 

explicitly programmed” (2013, para. 1). 

 

Data mining is distinct from classical statistical methods and covers “a variety of exploratory data 

analysis techniques that were developed in statistics and computer sciences for analyzing large amounts 

of data” (Strobl, 2013, p. 678). There are supervised and unsupervised approaches to machine learning. 

Supervised learning occurs when outcomes are used in the preprocessing of data, such as techniques to 

classify a set of observations into groups that are directly observed. In unsupervised learning, the 

outcomes are not used in the preprocessing, as in clustering techniques designed to sort a set of 

observations into latent or unobserved groups (Kuhn & Johnson, 2013).  

 

Supervised learning techniques train prediction models using observed outcomes. Models created 

using supervised learning modeling techniques such as classification and regression tree (CART, or 

decision tree) and random forests benefit from the flexibility of not being constrained by assumptions 

about the functional form and distribution of the data, which is in stark contrast to parametric models 

like logistic regression (Strobl, 2013). However, since the relationship between the predictors and 

outcome is not explicitly reported, data mining is often called a “black box” approach (Breiman, 2001b; 

Kuhn & Johnson, 2014; Veltri, 2017). Still, their automated data processing and ability to handle and 

select large numbers of variables at a time make CART and random forests ideal candidates for solving 

classification problems.  
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Classification Trees. Decision trees are built by finding variables and cut-points that can be used in 

combination for yes-no questions to best predict classifications. The optimal classification tree follows 

the principle of impurity reduction, by which “each split in the tree-building process results in daughter 

nodes that are more ‘pure’ than the parent node in the sense that groups of subjects with a majority for 

either response class are isolated” (Strobl, 2013, p. 684).  

 

Random Forests. Random forests is called an ensemble method, since it aggregates the predictions of 

several decision trees using a bootstrap approach (Breiman, 2001a; Strobl, 2013). This addresses a major 

disadvantage of CART models: the structure (including splitting variables and cut-points) and 

predictions of single decision trees are highly variable. With random forests, the forest makes a 

prediction by tallying votes across all decision trees contained therein. These models capture complex 

interactions between predictors. Moreover, by drawing samples with replacement—random samples of 

both data and predictor variables—and aggregating the results, decision boundaries are smoother than 

those established with a single tree, and the random variation that went into creating the forest of 

decision trees results in a diverse grouping of splits and predictor variables.  

 

The random selection of splitting variables in random forests creates unique opportunities for all 

variables. In some datasets, certain variables are clearly preferable for impurity reduction when 

constructing decision trees. However, since random forests involve a random sampling of records and 

variables, the strongest splitting variables are excluded from some decision trees in the random forest. 

“If the stronger competitor cannot be selected then a new variable has a chance to be included in the 

model and may reveal interaction effects with other variables that otherwise would have been missed” 

(Strobl, 2013, p. 693). Although random forests do not produce coefficients like regression models, 

variable importance measures allow for the ranking of which predictors were most crucial in optimizing 

the model (Breiman, 2001a). 

 

Unsupervised learning techniques seek to determine whether groups exist by identifying how 

individual records “hang together” (i.e., cluster on the variables of interest). Latent profile analysis 

(LPA) is a direct application of finite mixture modeling that allows for person-centered analysis: Instead 

of correlations among variables being of most interest, the relationship among individuals with respect 

to the variables of interest is the central concern (Pastor et al., 2007). The approach seeks to identify 

whether underlying (i.e., latent or unobserved) groups of students exist, determine what distinguishes the 
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groups from one another (i.e., characterize the group profiles), and assign each individual to a group 

based on her or his observed data. One of the major benefits of mixture model approaches like LPA is 

that they allow for potential uncertainty with the classification of each case (Morgan et al., 2016).  

METHODS 

EIT Models Use Supervised and Unsupervised Learning 

Techniques  

The methods used to create EIT models involved data preparation and data handling in addition to 

model training, testing, and comparison before the working models were established. 

 

Model development. For the EIT, CSDE created models using supervised and unsupervised learning 

techniques. Supervised learning techniques were used to develop random forests models for the EIT, and 

unsupervised learning techniques were used to develop latent profile analysis (LPA) models. For the 

younger grades, a hybrid model was developed that integrated the probabilities from LPA and random 

forests models to classify students by targeted support level. For middle school and high school students, 

random forests models were used to classify students by targeted support level. All models were 

developed in R. Random forests models were developed using the randomForest package (Breiman, 

Cutler, Liaw & Wiener, 2018); LPA models were developed using the mclust package (Fraley, Raftery, 

Murphy, & Scrucca, 2012). The improvement in performance of random forests models was negligible 

above 500 trees.  

Predictors of Academic Milestones Include the ABCs and more 

Beyond the ABCs (i.e., attendance, behavior, and course performance/credit accrual), the EIT models 

include a range of student-, school-, and district-level variables as predictors of academic milestones. 

Tables 3 through 6 provide an overview of these fields. For all models, grade-level-specific predictors 

are limited to those from previous grades. So, for a student entering 3rd grade, data through the end of 2nd 

grade is used to predict whether that student will make sufficient progress by the end of 3rd grade to 

meet ELA proficiency on the Grade 3 SBAC. When available, the previous two years of data were 

generally used for attendance, behavior, mobility, assessment, and course performance fields when 

constructing a model. Otherwise, the most recent year’s information was used for all predictors. Table 9 

(see Appendix) provides data definitions and additional details for the full list of fields. 

 



 

10 Early Indication Tool: Rationale, Methods and Results 

Table 3 

Predictors Used in EIT Models for Grades 1 to 3 
  Grade levels 

for which data is 

available 

Domain Elements K 1 2 

Student demographics Free and reduced lunch (FRL) eligibility; EL; SWD; age in grade X X X 
     

Attendance Percentage of school days attended  X X X 
     

Behavior In-school and out-of-school suspensions  X X X 
     

     

Mobility Schools and districts attended; number of school and district moves 

outside of the natural progressiona  

X X X 

     

Special Education  Primary disability (if applicable); percentage of time with non-disabled 

peers (TWNDP); hours of special education services 

X X X 

     

Retention Grades repeated X X X 
     

Kindergarten Entrance 

Inventory (KEI) 

Literacy, Numeracy, Language,  

Personal, Creative, and Physical scores on the KEI 

X   

     

Performance Index Performance index values for school and district X X X 
     

School and district 

demographics 

Enrollment; percent minority; percent high needs; percent poverty; 

chronic absence rate 

X X X 

     

Cohort Cohort aggregates of above X X X 
a  A natural progression school move is one in which the student changes schools because of a district’s school structure (e.g., 

a middle school enrollment when the elementary school does not provide the subsequent grade) 

 

Table 4 

Predictors Used in EIT Models for Grades 4 to 6 
  Grade levels 

for which data is 

available 

Domain Elements 3 4 5 

Student demographics Free and reduced lunch (FRL) eligibility; EL; SWD; age in grade X X X 
     

Attendance Percentage of school days attended  X X X 
     

Behavior In-school and out-of-school suspensions  X X X 
     

Mobility Schools and districts attended; number of school and district moves 

outside of the natural progression  

X X X 

     

Special Education  Primary disability (if applicable); percentage of time with non-disabled 

peers (TWNDP); hours of special education services 

X X X 

     

Retention Grades repeated X X X 
     

SBACs  SBAC mathematics and English language arts (ELA) scale scores X X X 
     

Performance Index Performance index values for school and district X X X 
     

School and district 

demographics 

Enrollment; percent minority; percent high needs; percent poverty; 

chronic absence rate 

X X X 

     

Cohort Cohort aggregates of above X X X 
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Table 5 

Predictors Used in EIT Models for Grades 7 to 9 
  Grade levels 

for which data is 

available 

Domain Elements 6 7 8 

Student demographics Free and reduced lunch (FRL) eligibility; EL; SWD; age in grade X X X 
     

Attendance Percentage of school days attended  X X X 
     

Behavior In-school and out-of-school suspensions  X X X 
     

Course performance Course enrollments, including subject area, rigor, and available credits; 

credits earned and failed  

 X X 

     

Mobility Schools and districts attended; number of school and district moves 

outside of the natural progression  

X X X 

     

Special Education  Primary disability (if applicable); percentage of time with non-disabled 

peers (TWNDP); hours of special education services 

X X X 

     

Retention Grades repeated X X X 
     

SBACs  SBAC mathematics and ELA scale scores X X X 
     

Performance Index Performance index values for school and district X X X 
     

School and district 

demographics 

Enrollment; percent minority; percent high needs; percent poverty; 

chronic absence rate 

X X X 

     

Cohort Cohort aggregates of above X X X 

 

 

Table 6 

Predictors Used in EIT Models for Grades 10 to 12 
  Grade levels 

for which data is 

available 

Domain Elements 8 9 10 11 

Student demographics Free and reduced lunch (FRL) eligibility; EL; SWD; age in grade X X X X 
      

Attendance Percentage of school days attended  X X X X 
      

Behavior In-school and out-of-school suspensions  X X X X 
      

Course performance Course enrollments, including subject area, rigor, and available credits; 

credits earned and failed  

X X X X 

      

Mobility Schools and districts attended; number of school and district moves 

outside of the natural progression  

X X X X 

      

Special Education  Primary disability (if applicable); percentage of time with non-disabled 

peers (TWNDP); hours of special education services 

X X X X 

      

Retention Grades repeated X X X X 
      

SBACs  SBAC mathematics and ELA scale scores X    
      

PSATs  PSAT mathematics and EBRW scale scores   X  
      

Performance Index Performance index values for school and district X X X X 
      

School and district 

demographics 

Enrollment; percent minority; percent high needs; percent poverty; 

chronic absence rate 

X X X X 

      

Cohort Cohort aggregates of above X X X X 
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Missingness of data was used as a predictor in EIT models. The missingness of assessment scale 

scores was treated as a predictor: Missing scores were imputed, a flag was retained to indicate whether 

each scale score was actual or imputed, and all of these variables were included as covariates when 

training the models. This approach increased the number of student records on which the models were 

trained; more important, it increased the number of students for whom the prediction models could be 

applied. Since students with disabilities, students of color, and English learners are disproportionately 

represented among those with missing scores, imputing assessment scale score values was a critically 

important technique to ensure the maximum possible number of records were retained for these 

important student groups. 

Using Balanced Training Datasets Addressed Class Imbalance 

Classification problems that involve predicting high school graduation or being on-track to milestones 

such as graduation involve class imbalance, since there is a large discrepancy between the size of the 

majority (e.g., graduate, on-track) and minority (e.g., non-graduate, off-track) classes. The minority 

class is commonly called the positive class, since “the interest usually leans towards correct 

classification of the ‘rare’ class” (Chen, Liaw, & Breiman, 2004, p. 1). Among EIT academic 

milestones, the On-track in 9th Grade indicator demonstrates the largest imbalance between classes: In 

Connecticut, more than 85 percent of students meet the criteria for the On-track in 9th Grade indicator at 

the end of their freshman year, which means less than 15 percent of students are in the minority (or 

positive) class for this outcome.  

 

To address class imbalance, EIT models were developed using balanced training samples. Balanced 

training sets were created using oversampling (also known as upsampling), a technique which retains all 

records from the majority class (e.g., on-track) and creates a bootstrap sample of cases with replacement 

from the minority (e.g., off-track) class to balance the number of on-track and off-track records. This 

method generally improves classification accuracy for positive (i.e., rare or off-track) cases at the 

expense of decreased classification accuracy for negative cases (Haixiang et al., 2017). A goal in 

developing the EIT models was to increase the odds of correctly identifying students who will be off-

track.  

 

Figure 1 shows how the training and validation samples were created. In each two-colored cylinder, the 

top portion (in green) represents on-track records, and the bottom section (in red) represents off-track 

records. The imbalanced training and validation sets maintain the same class imbalance as the sample. 



 

13 Early Indication Tool: Rationale, Methods and Results 

The balanced training dataset contains an equal number of records from the positive and negative 

classes. 

  
Figure 1. Flowchart to explain how training and validation samples were created 

 

Using Classification Accuracy Measures and Threshold 

Optimization Helped Improve Model Performance 

Classification accuracy measures. The validation dataset was used to test the models, and true-

positives (TP), false-positives (FP), false-negatives (FN), and true-negatives (TN) for predicted and true 

conditions were determined for all models. In those four designations, the true/false indicator identifies 

whether the predicted classification was correct/incorrect, and the positive/negative indicator denotes the 

predicted class as off-track /on-track (i.e., not meeting/meeting the academic milestone). In addition, 

following the recommendation of Bowers, Sprott, and Taff (2013), the precision, sensitivity, specificity, 

and false-positive rate (FPR; also known as the false-positive proportion [FPP] or 1 – Specificity) were 

also considered for all models. Lastly, AUC (i.e., area under the receiver operating characteristic [ROC] 

curve), accuracy and balanced accuracy were considered for all models. These measures are explained 

and the related equations are presented in the Accuracy Equations section below.  
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The contingency table (also known as confusion matrix) shown in Figure 2 summarizes how true and 

predicted conditions were compared to determine TP, FN, FP, and TN values for all models.  

 
  True condition  

  Condition positive 

(Off-track) 

Condition negative 

(On-track) 

 

Predicted condition 

Predicted condition  

positive 

(Off-track) 

a 

True-positive (TP) 

Correct 

b 

False-positive (FP) 

Type I Error 

a + b 

(TP + FP) 

Predicted condition 

negative 

(On-track) 

c 

False-negative (FN) 

Type II Error 

d 

True-negative (TN) 

Correct 

c + d 

(FN + TN) 

  a + c b + d a + b + c + d  

  (TP + FN) (FP + TN) (N) 

   

Figure 2. Contingency table  (Adapted from Bowers et al., 2013, p. 83) 

 

Accuracy Equations. The equations for calculating classification accuracy measures for each model are 

an essential component in evaluating and comparing models. All components of the equations can be 

found in the contingency table in Figure 2. The confusionMatrix function in the caret package (Kuhn, 

2018) was used to calculate a cross-tabulation of observed and predicted classes and all related statistics 

in R. 

 

Since accuracy, sensitivity, specificity, and balanced accuracy are metrics that are commonly used to 

select between classification models, these classification accuracy measures are explained below. 

Accuracy (also known as the overall accuracy rate) represents the proportion of correct predictions 

among all cases in the validation sample.  

Accuracy = (TP + TN) / N         (1) 

Sensitivity (also known as recall or true-positive rate [TPR]) measures the proportion of correct 

predictions among all observed positive cases in the validation sample. 

Sensitivity = TP / (TP + FN)                 (2)  

Specificity (also known as true-negative rate [TNR]) measures the proportion of correct predictions 

among all observed negative cases in the validation sample. 

Specificity = TN / (TN + FP)         (3) 

Balanced accuracy is an average of the sensitivity and specificity, and it measures the average accuracy 

in classifying minority and majority class observations.  

Balanced Accuracy = (Sensitivity + Specificity) / 2     (4) 



 

15 Early Indication Tool: Rationale, Methods and Results 

The balanced accuracy measure is particularly helpful when evaluating models involving rare events or 

imbalanced data, since overall accuracy rates are weighted and often high due to the classifier favoring 

the majority class when the validation data is imbalanced. In these cases, although the balanced accuracy 

will be lower than the overall accuracy rate, the balanced measure helps researchers identify which 

model does the best job of classifying both minority and majority class observations. While all accuracy 

measures were calculated using an imbalanced validation dataset, employing oversampling to balance 

the training datasets helped improve balanced accuracy results. 

 

EIT models maximized balanced accuracy instead of overall classification accuracy. Unfortunately, 

privileging the negative class by trying to maximize overall classification accuracy results in poor 

classification accuracy for cases in the crucial rare class. For example, consider a dataset in which 95 of 

100 records are graduates (i.e., on-track). Simply classifying all records as graduates yields a 95 percent 

overall classification accuracy and 100 percent specificity (i.e., the proportion of on-track students who 

were correctly classified), but it classifies all five non-graduates as graduates—a 0% sensitivity that 

misclassifies all rare cases in the positive class—and results in a balanced accuracy of 50%. Optimized 

classification models would look to improve on this simple classification rule by improving accuracy 

measures. Table 7 provides an overview of the values associated with this example to allow for a clear 

comparison of accuracy measures.  

Table 7 

Comparison of accuracy measures 

Measure Base Model Model A Model B 

TP 0 2 4 

FN 5 3 1 

FP 0 1 4 

TN 95 94 91 

Accuracy 0.95 0.96 0.95 

Balanced Accuracy 0.50 0.69 0.88 

Sensitivity  

   (TPR or Recall) 0.00 0.40 0.80 

Specificity 1.00 0.99 0.96 

Precision (PPV) - 0.67 0.50 

Note. The Prevalence was 0.05 – 5% of students in the sample 

were non-graduates (i.e., off-track) 

 

For instance, consider Model A: It classifies 97 records as graduates (including 94 correctly classified) 

and three records as non-graduates (with two correctly classified), resulting in an increase in overall 

classification accuracy (96%), sensitivity (40%, with two of five actual non-graduates correctly 

classified in the prediction model), and balanced accuracy (69%). A second model (Model B) classifies 

True positives: The number 

of correct off-track 

predictions 

False positives: The number 
of incorrect off-track 

predictions 

 

 

False negatives: The number 

of incorrect on-track 
predictions 

 
True negatives: The number of 

correct on-track predictions 
 

Accuracy: The proportion 
correct among all predictions 

 

 
Sensitivity: TP / (TP + FN) 

 

 
Precision: TP / (TP + FP) 

Balanced Accuracy:  
(Sensitivity + Specificity)/ 2 

 

 Specificity: TN / (TN + FP) 

 

 

 



 

16 Early Indication Tool: Rationale, Methods and Results 

92 records as graduates (91 of which are correctly classified) and eight records as non-graduates (four 

correct). Model B results in a decrease in overall classification accuracy (95%) from Model A, but an 

increase in sensitivity (80%, since four of five rare cases are correctly classified) and balanced accuracy 

(88%). If resources were limited such that an intervention could only be administered to five students, 

Model B may be preferred, since it improves on the balanced accuracy and doubles the sensitivity of 

Model A with minimal loss in specificity and overall classification accuracy. All EIT models were 

developed with the crucial rare class in mind, and the final EIT models sought to maximize balanced 

accuracy instead of overall classification accuracy. 

 

Thresholds. Aside from data preprocessing, another approach in dealing with data imbalance is to 

adjust the threshold (also known as cut-off or cut-point) criteria. Since random forests models result in a 

probabilistic prediction for the classification for each student record, it is straightforward to assess the 

predictive accuracy of the models. While it is common to use a 0.5 threshold to assign binary classes 

based on probabilistic predictions (i.e., cases with a probability of 0.5 or higher of belonging to a 

particular class are assigned to that class; all others are assigned to the alternate class), this threshold 

“does not necessarily preserve the observed prevalence [i.e., the overall proportion of cases in which a 

particular outcome is observed] or result in the highest prediction accuracy, especially for [rare events] 

data sets with very high or very low observed prevalence” (Freeman & Moisen, 2008, p. 48). 

Researchers have compared the performance of threshold criteria to improve binary classification 

models and have shown that adjusting the threshold criteria is a valuable method for model selection and 

optimization (e.g., Freeman & Moisen, 2008). 

 

For each EIT model, the classification accuracies of different threshold criteria were compared to select 

the best model and optimize model performance. Optimal thresholds were determined using Youden’s 

index (also known as Youden's J statistic), which is the difference between the TPR (i.e., sensitivity) and 

FPR (i.e., 1 – Specificity) (Youden, 1950). For each model, the cut-point that maximized Youden’s 

index was selected as the optimal threshold. 

 

Youden’s index = Sensitivity – (1 – Specificity) = Sensitivity + Specificity – 1  (5) 

Statistical software and hardware specifications 

The statistical software used to develop these models included SAS Enterprise Guide Version 7.15 (SAS 

Institute Inc., 2018), SAS Data Integration Studio Version 4.903 (SAS Institute Inc., 2018), R Version 
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3.5.0 (R Core Team, 2018), and RStudio Version 1.1.453 (RStudio Team, 2016). The SAS programs 

were used to acquire the data, and R programs were executed for data cleaning, preparation, analysis, 

and modeling. The SAS software ran on a computer with the following specifications: Windows 7 

Enterprise; 64-bit Operating System; 8 GB of RAM; and Intel Core i5-4570T CPU @ 2.90GHz 

processor. The R and RStudio software ran on a computer with the following specifications: Windows 

Server 2012 R2 Datacenter; 64-bit Operating System, x64-based processor; 128 GB of RAM; and Intel 

Xeon Gold 6128 CPU @ 3.40GHz processor (2 processors). 

Dataset 

For each model, the training data consisted of data collected from the population of Connecticut public 

school students who were in the model’s grade in the previous academic year.  

 

Samples. While the full dataset contained the students who were in the model’s grade in the previous 

year, the sample for each grade included records for which attendance was not missing. In addition, 

models for grades 8 to 12 required that the previous year’s record included attendance and course-level 

data. The dataset was in wide format, structured so that each row corresponded to one unique student, 

and each column corresponded to a single variable. All continuous predictor variables were standardized 

using student-level standard deviations prior to model development, and samples were created from the 

cohort described above.  

 

To handle missing data, listwise deletion was used to extract complete records; a complete record is any 

student record for which all corresponding non-assessment fields for a particular sample have a value. 

Complete assessment data was not required; the mice (Multivariate Imputation via Chained Equations) 

package in R (van Buuren & Groothuis-Oudshoorn, 2011) was used to impute missing Smarter 

Balanced Assessment Consortium (SBAC) mathematics and English language arts (ELA) score values, 

and a flag was retained to indicate whether each SBAC scale score was actual or imputed. Loosening the 

restrictions allowed for models to be trained using a larger sample and for the impact of including 

different variable combinations as predictors to be evaluated. All of the fields in this study correspond 

with information that CSDE stores in its secure data warehouse and mandates public school districts to 

report, including demographics, attendance, discipline, mobility, and achievement data.  

 

Training and validation datasets. In order to obtain accurate forecasts, all models were developed 

using holdout sample validation, a process in which part of the sample is designated to model training, 
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and the remaining part of the sample is dedicated exclusively to model testing (also known as validation) 

(Cooil, Winer, & Rados, 1987; Mosier, 1951). The large sample size allowed for data splitting to obtain 

independent training and validation datasets. Stratified random sampling was used to partition the data 

and preserve the overall class distribution. Since more than 85 percent of students were in the On-Track 

in 9th Grade class, the rare class of off-track students was identified as the positive class. The training 

sample contained 80 percent of the records and was used to derive the models. The remaining 20 percent 

of records comprised the validation dataset that was used to evaluate the classification accuracy of the 

models. 

 

Training datasets. Since the training sample was created by stratified random sampling to preserve the 

overall class distribution of the data in the overall sample, the training sample was imbalanced (i.e., 87.4 

percent of records were on-track for the grade 9 model). This imbalanced training sample was used to 

create a training sample that was balanced via oversampling. The oversampled training set was created 

by merging all on-track records from the majority class with records resampled from the minority class 

with replacement; off-track records were resampled until the on-track and off-track classes were 

perfectly balanced. 

 

Validation datasets. Balanced datasets were not used for testing. It is important to test models using an 

imbalanced dataset, since any future application of the models will make predictions using imbalanced 

data. For each sample, the validation dataset contained a random sample of 20 percent of the records 

from the imbalanced original sample. Validation samples were used to evaluate the classification 

accuracy of the models.  

Analysis 

A series of summary tables and data visualizations were used to analyze the results of various EIT 

models. In addition to summary tables presenting the classification accuracy measures, data 

visualizations were generated to help with model comparisons and to understand the relative importance 

of predictor variables. These visualizations included receiver operating characteristic (ROC) curves—

including composite ROC curves with AUC values for all models, and individual ROC curves with 

optimal thresholds—and variable importance plots. 

 

Generally, the model with the largest area under the ROC curve and highest balanced accuracy was 

selected as doing the best job. Since a premium was placed on correctly classifying off-track records 
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(i.e., records from the positive or minority class), precision (i.e., the proportion correct among all off-

track predictions) was also among the most important accuracy measures when selecting between 

models.  
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RESULTS 
Model results will be reported in two sections: (1) balanced accuracy; and (2) variable importance 

rankings. In all cases, models trained using the oversampled training sample performed best. Moreover, 

balanced accuracy was maximized at thresholds optimized using Youden’s index.  

Balanced Accuracy 

Table 8 presents the balanced accuracy results for all EIT models. Balanced accuracy was lowest for 

grades 1 to 3. This result is not surprising, since these early-grade students are just starting their 

education journey. Moreover, those models do not include any standardized test scores as predictors 

(Kindergarten Entrance Inventory [KEI] scores are not as reliable as SBAC scores), there is nearly a 

one-to-one ratio of off-track to on-track records, and there is a limited number of predictor variables 

available. 

 

Table 8 

Percent On-Track in Test Dataset and Balanced Accuracy in Test Results 

Grade Outcome 

Percent of records  

that were On-Track 

Balanced 

Accuracy 

1 Grade 3 SB ELA Proficient 54.8 0.727 

2 Grade 3 SB ELA Proficient 54.5 0.726 

3 Grade 3 SB ELA Proficient 53.9 0.736 

4 Grade 6 SB ELA and Math Proficient 40.8 0.837 

5 Grade 6 SB ELA and Math Proficient 40.4 0.863 

6 Grade 6 SB ELA and Math Proficient 40.1 0.875 

7 9th Grade On-Track 87.5 0.735 

8 9th Grade On-Track 87.3 0.766 

9 9th Grade On-Track 87.0 0.806 

10 Grade 11 CCR (Ind 5 passing AND SAT Benchmark) 35.0 0.846 

11 Grade 11 CCR (Ind 5 passing AND SAT Benchmark) 34.4 0.848 

12 Grade 12 CCR (Ind 5 passing AND SAT Benchmark) 43.2 0.874 

Note. Balanced accuracy is calculated as the average of the proportion corrects of the on-track and off-track classes. 

For example, a model that classified 81.8% of on-track students correctly and 85.6% of off-track students correctly 

in the test data has a balanced accuracy of 0.837 or 83.7%. The balanced accuracy calculation is not a weighted 

average. 
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Variable Importance Rankings 

Figures 3 to 14 show the variable importance results for the random forests models. For grades 1 to 3, 

free-reduced lunch type (as determined by family income level), attendance, and special education status 

are the most important predictors of the grade 3 academic milestone. The academic components of the 

KEI—literacy, numeracy, and language—and whether the student was enrolled in an Alliance District 

(one of Connecticut’s lowest-performing districts) last year are also key predictors of meeting the grade 

3 academic milestone. 

 

 
Figure 3. Variable importance for Grade 1 random forests model trained with oversampled training sample 

 

 

 

 
Figure 4. Variable importance for Grade 2 random forests model trained with oversampled training sample 
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Figure 5. Variable importance for Grade 3 random forests model trained with oversampled training sample 

 

Starting in grade 4, standardized test scores (SBAC ELA and math taken in grades 3 to 8, then PSATs 

taken in grade 10) have the highest variable importance in predicting whether students will reach their 

academic milestones. As in earlier models, free-reduced lunch type, attendance, and special education 

status also have high importance as predictors. 

 

 
Figure 6. Variable importance for Grade 4 random forests model trained with oversampled training sample 

 

 

 
Figure 7. Variable importance for Grade 5 random forests model trained with oversampled training sample 
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Figure 8. Variable importance for Grade 6 random forests model trained with oversampled training sample 

 

 

 
Figure 9. Variable importance for Grade 7 random forests model trained with oversampled training sample 

 

  



 

24 Early Indication Tool: Rationale, Methods and Results 

Starting with the grade 8 model, counts for credits earned and failed are important predictors for meeting 

academic milestones.  

 

 
Figure 10. Variable importance for Grade 8 random forests model trained with oversampled training sample 

 

 

 
Figure 11. Variable importance for Grade 9 random forests model trained with oversampled training sample 

 

 

 
Figure 12. Variable importance for Grade 10 random forests model trained with oversampled training sample 
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Figure 13. Variable importance for Grade 11 random forests model trained with oversampled training sample 

 

 

 
Figure 14. Variable importance for Grade 12 random forests model trained with oversampled training sample 
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DISCUSSION 
 

The EIT aims to identify those students in need of targeted support and inform on-the-ground 

practitioners who may intervene long before students may be dropping out. In light of the accuracy 

comparisons—particularly the area under the ROC curve (AUC) and balanced accuracy for the best-

fitting models—the random forests model developed using a training set that was balanced via 

oversampling does the best job of identifying which students are at risk for not being academic 

milestones. The random forests model had the largest AUC and, at optimal thresholds determined by 

Youden’s index, the highest balanced accuracy. Although the CART model can use surrogate variables 

when missing values are encountered (Breiman et al., 1984), it is very dependent on training data and 

prone to overfitting. The EIT models use powerful imputation techniques to address missing data 

concerns, and the random forests model was superior to CART and all other models in terms of 

performance. Furthermore, the random forests model decorrelates decision trees, handles large numbers 

of variables and complex interactions, and is not constrained by assumptions. In light of these 

advantages and its superior performance, the random forests methodology does the best job of 

identifying which students are at risk for not being on-track to graduate. 

 

The ranked lists of variable importance showed that Smarter Balanced Assessment Consortium (SBAC) 

mathematics and English language arts (ELA) scale scores had the highest variable importance in 

predicting the EIT’s academic milestones for grades 4 through 11. Attendance, course performance, and 

free-and-reduced lunch type occupied the next tier of variables in terms of importance. These findings 

are consistent with other studies that examined the on-track indicator and graduation outcomes (e.g., 

Allensworth, 2013; Knowles, 2015; Mac Iver & Messel, 2013). 

Implications of Results 

The comparison of test results during EIT model development demonstrated that preprocessing data—

oversampling and imputing missing standardized test scores, in particular—and optimizing thresholds 

using Youden’s index improves classification accuracy when identifying which students need support. 

In addition, there is value in including special education-related predictors to improve classification 

accuracy for students with disabilities. Course-, school- and district-level variables all added to the 

classification accuracy of high school prediction models. Lastly, SBAC and PSAT scores are highly 

predictive of all subsequent academic milestones.  
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As of August 31, 2018, Connecticut was one of 13 SBAC member states, along with California, 

Delaware, Hawaii, Idaho, Michigan, Montana, Nevada, North Carolina, Oregon, South Dakota, 

Vermont, and Washington (SBAC, n.d.). Educational leaders from SBAC member states could look to 

conduct similar studies and analyze whether their results converge with the current study’s findings with 

respect to classification accuracy and variable importance. More generally, they can use this study’s 

findings to explore ways to improve EWSs and increase rates of graduation and college and career 

readiness in their respective states. 

 

Since the random forests models calculated probabilities of being on-track and performed well at 

identifying at-risk students, CSDE uses these probabilities to classify students into high, medium, and 

low support levels and present this information through secure dashboards similar to the Massachusetts 

Early Warning Indicator System (EWIS) (Massachusetts Department of Elementary and Secondary 

Education & AIR, 2013a, 2013b, 2014).  

 

Classification into high, medium, and low support levels can also help to illustrate the relationship 

between variables and classification levels. More important, it can highlight the importance of going 

beyond single-variable, single-threshold early warning systems (e.g., systems that focus on only one 

indicator, such as all students with attendance below 90%), which overlook complex interactions among 

predictors. For example, Figures 15 and 16 show two different “Support levels by predictor” views. 

Figure 15 shows a mosaic plot of support levels by chronic absentee status (i.e., those students who 

missed more than 10% of school days).  

 

Figure 15. Mosaic plot of support levels by chronic absentee status 

All students 
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The smaller square to the left of the arrow shows the overall distribution of support levels for all 

students entering 8th grade. The support levels were assigned based on each student’s probability of 

being on-track by the end of 9th grade: The 25 percent of students with the lowest probabilities were 

assigned to the High Support group, the next 35 percent of students were classified as Medium Support, 

and the 40 percent of students with the highest probabilities were assigned to the Low Support group. To 

the right of the arrow, the mosaic plots show that students who are chronically absent are more likely to 

be in the High or Medium Support groups. However, there are chronic absentees with high probabilities 

of being on-track (i.e., Low Support) and there are students without chronic absences who have a low 

probability of being on-track (i.e., High Support). Clearly, one variable is not sufficient to predict a 

student’s probability of being on-track. 

 

Figure 16. Mosaic plot of support levels by suspensions 

Figure 16 shows a mosaic plot of support levels by suspensions. Again, the smaller square to the left of 

the arrow shows the overall distribution of support levels for all students entering 8th grade. When we 

look to the right of the arrow, the first thing to notice is that the 1+ Suspensions section is wider than the 

Chronic Absentees section in Figure 15, which shows that there were more suspended students than 

chronic absentees in Grade 7. Again, the probabilities from the random forests model did not result in all 

students who met a particular single-variable threshold (in this case, having one or more suspensions) 

being placed in the same support level. By considering a student’s entire profile—including  attendance, 

behavior, course performance, credit accrual, mobility, detailed special education data, standardized 

assessment scores, English learner status and family income status—policymakers will have a more 

complete picture from which to make more informed decisions regarding the timing, type, and target of 

interventions to implement. 

All students 
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Conclusion  

The EIT modeling methods and extensive predictors go beyond the logistic regression methods and 

binary flag predictors (i.e., 0-1 fields that indicate broad membership in student groups such as students 

with disabilities) that are pervasive in educational early warning systems. The methods, variable 

importance and accuracy measures presented herein provide practitioners the opportunity to leverage 

new knowledge about students who are at-risk and to test interventions at many levels in an attempt to 

improve graduation outcomes. 
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APPENDIX 
Table 9  

Data definitions for fields used to predict academic milestones in EIT models 

Field Description 

isOnTime A student who is on time for grade progression 

(isOnTime = 1) is one who is < 15 years old on entering 

9th grade (< 14 years old on entering 8th grade, etc.); 

otherwise isOnTime = 0. 

isHighNeeds A student with High Needs status (isHighNeeds = 1) is 

one who is economically-disadvantaged, an English 

learner (EL), or a student with disabilities (SWD); 

otherwise isHighNeeds = 0 

LunchCode F for free; R for reduced-price; N for non-subsidized 

isSpEd A student with Special Education status (isSpEd = 1) is 

one with an identified disability who needs specially 

designed instruction to meet his/her unique needs and to 

enable the child to access the general curriculum of the 

school district; otherwise isSpEd = 0 

PrimaryDisabilityCode Primary disability code; this field contains the code 

corresponding to the student’s primary disability only for 

those students for whom isSpEd = 1, otherwise it defaults 

to 99 

TWNDP_pct_g<G>a Percentage of Time with Non-Disabled Peers  

(Hours inside regular education classroom ÷ hours in 

school day) x 100 

isEL A student with English Learner (EL) status (isEL = 1) is 

one who meets at least one of the following criteria:  

 English is not the primary language spoken in the 

home, regardless of the language spoken by the 

student; 

 English is not the language most often spoken by 

the student;  

 English is not the language the student first 

acquired; 

AND whose English language proficiency test results met 

English Learner requirements; otherwise isEL = 0 

DistrictEnrollment_g<G> Number of students enrolled in student’s public school 

district 

DPI_ELA_g<G> ELA District Performance Index (DPI) of student’s 

public school district  

DPI_Math_g<G> Math DPI of student’s public school district  

DPI_Science_g<G> Science DPI of student’s public school district  

DistrictNextGenPct_g<G> Next Generation Accountability Percentage of Points for 

student’s school district  

DistrictPctMinority_g<G> Percentage of minority students in student’s school 

district 
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Table 9: Continued 

Field Description 

DistrictPctHighNeeds_g<G> Percentage of high needs students in student’s school 

district 

DistrictPctPoverty_g<G> Percentage of students in poverty in student’s school 

district 

DistrictChronAbs_g<G> Chronic Absenteeism rate for student’s school district 
SchoolEnrollment_g<G> Number of students enrolled in student’s public school  

SPI_ELA_g<G> ELA School Performance Index (SPI) of student’s public 

school  

SPI_Math_g<G> Math SPI of student’s public school  

SPI_Science_g<G> Science SPI of student’s public school  

SchoolNextGenPct_g<G> Next Generation Accountability Percentage of Points for 

student’s school  

SchoolPctMinority_g<G> Percentage of minority students in student’s school  

SchoolPctHighNeeds_g<G> Percentage of high needs students in student’s school  

SchoolPctPoverty_g<G> Percentage of students in poverty in student’s school  

SchoolChronAbs_g<G> Chronic Absenteeism rate for student’s school 

Fac1AttendanceDays_g<G> Number of school days the student attended  

Fac1MembershipDays_g<G> Total days student’s school was in session during Grade 5 

Pct_Attendance_g<G> Percentage of school days attended  

(Fac1AttendanceDays_g5 ÷ Fac1MembershipDays_g5) * 100 

Repeat_g<G> Flag indicating whether the student repeated grade, with a 

value of 1 for Yes and 0 for No 

ISS_g<G> Student’s in-school suspension incidents in grade <G> 

OSS_g<G> Student’s out-of-school suspension incidents in grade <G> 

SchoolMoves_g<G> Number of times the student changed schools during grade 

NOTE: School moves does not include in-district promotions 

such as elementary school to middle school. 

SBELA_g<G>b Connecticut Smarter Balanced English language arts (ELA) 

scale score (reported for grades 3 to 8) 

SBMath_g<G> Connecticut Smarter Balanced mathematics scale score 

(reported for grades 3 to 8) 

Tot_Cred_Earned_g<G> Total credits earned (reported in grades 7 to 11) 

Tot_Cred_Failed_g<G> Total credits failed (reported in grades 7 to 11) 

Tot_Core_Earned_g<G> Total core (i.e., ELA, math, social sciences and history, and 

science) credits earned (reported in grades 7 to 11) 

Tot_Core_Failed_g<G> Total core credits failed (reported in grades 7 to 11) 

isCoreCredFailed1_g<G> Flag indicating if total core credits failed >= 1; 1 if yes, 0 

otherwise (reported in grades 7 to 11) 

isOnTrack_g9 c Flag indicating if student is On-Track at the end of Grade 9; 1 

if isCoreCredFailed1_g9 = 0 and Tot_Cred_Earned _g9 >= 5; 

0 otherwise (reported in grade 9) 

Tot_EnrAdv_Cred_Earned_g<G> Total credits earned in enriched or advanced courses (reported 

in grades 7 to 11) 

Tot_Honors_Earned_g<G> Total credits earned in honors courses (reported in grades 7 to 

11) 
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Table 9: Continued 
Field Description 

Tot_Basic_Cred_Earned_g<G> Total credits earned in basic or remedial courses (reported in 

grades 7 to 11) 

Tot_Basic_Cred_Failed_g<G> Total credits failed in basic or remedial courses (reported in 

grades 7 to 11) 

Tot_English_Cred_Earned_g<G> Total English credits earned (reported in grades 7 to 11) 

Tot_English_Cred_Failed_g<G> Total English credits failed (reported in grades 7 to 11) 

Tot_Math_Cred_Earned_g<G> Total Math credits earned (reported in grades 7 to 11) 

Tot_Math_Cred_Failed_g<G> Total Math credits failed (reported in grades 7 to 11) 

Tot_Science_Cred_Earned_g<G> Total Science credits earned (reported in grades 7 to 11) 

Tot_Science_Cred_Failed_g<G> Total Science credits failed (reported in grades 7 to 11) 
a  <G> is used as a placeholder when a variable is reported in more than one grade level, as noted in the description.  

b  Starting in 2015, the SBAC was the standard assessment administered in Connecticut grades 3 through 8.  

c  A student is on-track in 9th grade if s/he earns at least five full-year credits in the year and no more than one failing grade 

in English, mathematics, science, or social studies (CSDE, 2016). 
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